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Stability conditions are obtained for a bonded rod fabricated from an inhomogeneously 
aging material with a nonlinear creep law. 

The stability problem of inhomogeneously aging viscoelastic rods was investigated in 
a linear formulation in [i, 2]. 

i. FORMULATION OF THE PROBLEM 

Let us consider the bending of a rectilinear rod of length ! fabricated from an inhomo- 
geneously aging viscoelastic material. The rod has two axes of symmetry. The bending occurs 
in a plane passing through the longitudinal axis and an axis of symmetry. Let us introduce 
an Ox axis directed along the rod longitudinal axis in the undeformed state. The rod trans- 
verse section is identical for all points x. We introduce axes x I and x 2 in the rod sec- 
tion. The x I axis lies in the plane of rod bending, while the x 2 axis is directed along the 
neutral axis. We denote the domain in the xlx 2 plane that is occupied by the rod section by 
~. The area S of the rod transverse section, and the moment of inertia of the section with 
respect to the neutral axis J are 

Q Q 

Here ds is a section area element. 

We set the beginning of time measurement at the time of material formation in the neigh- 
borhood of the point O. We denote the age of the material in the neighborhood of the point 
x with respect to the material at the point 0 by p(x). The function p is piecewise-continu- 

ous and bounded. 

At the time t o >_- 0, a compressive force P and a distributed transverse load of intensity 
q(x) are applied to the rod. For a uniaxial stress state, the stress o(t, x) and the strain 
e(t, x) at the point x at time t >_ t o are connected by the relationship [3] 

E~(e(t, x)) = (I + K)a, o(t, x) ---- E(I -- H)~Ce), (1.2) 

where E is the constant instantaneous elastic strain modulus, I is a unit operator, K and 
R are the creep and relaxation operators 

t t 

Ko 
e 

tO fO 

k(t, T) and r(t, ~) are the creep and relaxation kernels, and ~ is a given piecewise-continu- 
ous bounded function. These quantities are determined from simple creep and relaxation tests. 

Let us note that recent experimental investigations [4, 5] indicate that (1.2) can be 
applied uniformly for monotonic or nonmonotonic changes in the strain in time for certain 
polymers. It has also been established that the equation of state (1.2) describes the results 
of experiments well for step and contrast loading of polyvinyl chloride and polymethyl metha- 
crylate specimens. 

Furthermore, let there be a function rl(t, ~) such that 

I rl ] = sl'Pt S rl (t, ~) dr < i, t /~  t o 
~o 
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and for all 0 5- x < 9~. t o =< z ~ t 

0 ~ r(t q- 9(x), ~ + ,o(x)) < r~(t, ~). 

The function r1(t, ~) allows of the representation 

~ ( t ,  ~ = r  ~) + ~ d t ,  t ) ( t  - ~)-~, 

w h e r e  t h e  f u n c t i o n s  Sz~ ~2 a r e  c o n t i n u o u s  i n  t ,  ~ a n d  0 < K < i ;  t h e r e  a l s o  e x i s t s  a f u n c t i o n  
r0(t, x) such that ]r0] < I and uniformly in t ~ t I as t I + ~ ,  

t 

l i m b  S suPx ] r (t q- 9 (x), 1: -I- 9 (x)) --  r o (t, t) j dt = O. 
t l  

Let R 0 denote the relaxation operator with kernel r 0, K 0 its corresponding creep oper- 
ator, and k0 the kernel of this operator. It is considered that Ik01 < ~. 

2o EQUATIONS FOR THE ROD DEFLECTION 

Let wl(t , x, x I) and w2(t , x, x l) be the longitudinal displacement and deflection at a 
point of the rod that is at a distance x~ from the longitudinal axis. In conformity with 
the hypothesis of plane sections 

. ' t  = u(t,x) -- x ~ u ' ( t , z ) , ~  = y(t, z ) , u ' =  @/oz, ( 2 . 1 )  

where u and y are the longitudinal displacement and deflection at a point on the :rod longi- 
tudinal axis. 

It follows from the relationships (2.1) that for small strains 

e u t 7 1 I  
= - -  x l s  �9 ( 2 , 2 )  

Let M(t, x) denote the bending moment, and N(t, x) the normal force, while Q(t, x) is 
the transverse force 

(2.3) 

Substituting (1.2) and (2.2) into (2.3), we obtain 

~q f~ 
(2.4) 

Considering the loading process to be sufficiently slow, we neglect inertial forces. We as- 
sume, moreover, that the rod deflection is sufficiently small, so that the quantity (y~)2 
can be neglected in comparison with one. Then the equilibrium equations for a rod element 
have the form [6] 

N '  = 0, M' = Q, Q' = - -Nu"  @ q. ( 2 . 5 )  

Let u0, Y0 denote the displacement of points of the rod axis and M0, No, Q0 the bending 
moment and longitudinal and transverse forces in the absence of a transverse load (q = O). 

We set 

go ~ 0, M0 = 0, N0 = P ,  Qo = 0. ( 2 . 6 )  

The  l o n g i t u d i n a l  d i s p l a c e m e n t  Uo i s  d e t e r m i n e d  f r o m  t h e  r e l a t i o n s h i p s  ( 2 . 4 ) ,  ( 2 . 6 ) w i t h  ( 1 . 1 )  
t a k e n  i n t o  a c c o u n t :  

( . ~ )  = - (:  + A') p / (Es>  

L e t  t h e  t r a n s v e r s e  l o a d  i n t e n s i t y  q b e  s u f f i c i e n t l y  s m a l l .  We s e t  

( 2 . 7 )  

u = uo+ Au, g = ! / o +  Ag, M= Mo I- AJl, ?r N0q- AN, Q-= Q0"F AQ (2 .8)  
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and we consider the increments in the displacements, forces, and moments that are caused by 
the transverse load to be sufficiently small also. We substitute (2.8) into the relation- 
ships (2.4) and (2.5). Taking account of (1.4) and (2.6), and neglecting products of quanti- 
ties with the indicator A, we have 

( A N ) ' =  0, (AM)' = aQ, (AQ)' = --P(Ay)" + q; ( 2 . 9 )  

! ! 
AM = E J  (I - -  R) q~ (Uo) (A.tt) '~, AN --=- - -  ES (I - -  R) ~p" (U'o) (Au)'i ( 2 . 1 0 )  

Definition. A rod is called Lyapunov stable in an infinite time interval if for any 
E > 0 there is a 6 = 6(E) > 0 such that from the inequality sup xiq(x)l < 6 there follows the 
estimate supt,xlAy(t, x) I < e (0 < x < s t ->- to). 

3. DERIVATION OF THE STABILITY CONDITIONS 

Since the derivation of the stability conditions is analogous for distinct kinds of rod 
end fixings, we limit ourselves to the case of a rod whose ends are rigidly clamped: y(t, 
0) = y(t, s = y'(t, 0) = y'(t, s = 0. From this relationship and (2.6), (2.8) we obtain 

hy(t, 0 ) =  h y ( t , t ) =  Ay'(t,  0 ) =  a y ' ( t , / ) =  0. ( 3 . 1 )  

According to (2.9) and (2.10), the rod equilibrium equation can be written in the form 

EJ - R) r + P = a ( 3 . 2 )  

Let us multiply this equation by Ay(t, x) and integrate with respect to x between the limits 
0 and s Integrating by parts and taking account of the boundary conditions (3.1), we find 

l l l l 

0 0 0 0 

= P/(EJ) ,  q1 ---- q/(EJ).  ( 3 . 3 )  

Let us estimate the terms in (3.3) by considering that for any x~ [0, II 

! r 

Using the Cauchy-Bunyakovskii inequality, we have 

, ClY2 (t)'<~ y2 (t) = S ' ' cp (%) [(AWl" ,~ ~< %Y] (0, 
, 0  

I; I I 
t o 0 

(3.4) 

where 

G ~ - - ~ q ~ d x ;  Y j  = 3  ['~x j A y ( t '  x) 
0 0 

dz ( i = 0 ,  t ,  2). 

Let U denote a set of functions v(x) that have square-integrable second derivative and 
satisfy the boundary conditions v(0) = v'(0) = v(s = v'(s = 0. We set 

�9 y ' �9 (~,,)~ ~ ~,o (t) =,~f , ,  ~ 6'~ d~ ,,-d~ 
0 

~u (t) = inf v tp' (u ; )  (v") 2 dx (v') ~ dx . 
0 

Evidently X0(t) ~ X~ > 0, X1(t) ~ X~ > 0. 
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Let us introduce the notation 

Ajl=supt%~l(t), A~I= sllpt%~l(t), t~t O . 

To estimate the quantities Yo(t), Y1(t) we use the inequalities 

Yo (t) < A~I/~Y (t) ~ (c2A~)]/= Y2 (t), Y~ (t) < A71y2 (t). 

Taking (3.4) and (3.5) into account, we obtain from (3.3) 

(3.5) 

to 

For ~ < A I we find from this relationship and (3.4) 

t 
C 1 ( l  - - "  gA11)  Y2 (l) ~< c~ ~ r I (l, T) Y2 (%) d~-jL ~ (cgAol) l /2 .  

to 

According to the Gronwall-Bellman inequality, the estimate 

Y2(t) ~ G/if) ( 3 . 6 )  

follows from this relationship, where f is a monotonically increasing, continuous function. 

We rewrite (3.2) in the form 

i t l  I t  t t !  tr 

~ :  [ r  Ro) ~' (%) (~) ] + ~ (a~)" = E+ [(R - Ro) ~' (=o)(A~) ] + q. 

Since the operator I - R 0 is independent of the coordinate x, it can be taken out from under 
the derivative sign. Applying the operator I + K 0 to the relationship obtained, we have 

[~' (uo) (Ay) ] + ~ (I + Ko) (Ay)" : = (I + Ko) [(B -- Bo) ~' (u~) (Ay)"]" + (l + Ko) ql" ( 3 . 7 )  

We multiply (3.7) by Ay(t, x) and integrate with respect to x between the limits 0 and 
~. Integrating by parts and taking account of boundary conditions (3.1), we write 

l 1 g 

S ~o, (41L<~/,j ~ ~ = ~  S <~I' (, + ~o)<~)' ~ + j" ~ (+  + ,~o) ~j~ § 
0 0 0 

l 

+ S <A~),, (~ + a-o) (R _ Ro) r (u;) (A~),, e~. 
0 

(3.8) 

We estimate the first two terms in the right side of this relationship by using the 
Cauchy-Bunyakovskii inequality and (3.5) 

Here 

(A~)' (I + Ko) (~,~)' dx < (~ + [ ~'o 1) a~ Z (0, 
0 

�9 Au (I + Ko) qle~ < a (l + k o i)'(c~a;-1)~/~ z 2 (0. 
1 

Zj(t) = supx Yj(~); Z (t) ---- sup~ Y(T); t o ~< ~c g t. 

( 3 . 9 )  

It follows from the properties of the limit relaxation operator that for any el >0 there 
is a T(e I) > t o such that for t k T(E I) 

t 
j" sup~ I " (t + p (.),  T - i  v (:,)) - ro (t, z) I d~ < q .  

T(q) 
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We estimate the third term in the right side of (3.8) for t >-_ T(ez) by using this relation- 
ship and the Cauchy-Bunyakovskii inequality 

t t 

(Ay),, (t + Ko) (R -- Ro) ~ ("o) (ay)" ,~ < %Z~ (0 l(l + I ko I) x 

X ([ r o [ --}- I r, l) Z2 (T (e,)) q-- elZ = (t) ( l  n t- [ k o I)]" 

I f  

We obtain from the relations (3.8)-(3.10) 

[~ - ~ (~ + j  ko I) A71] z~ (t) < c2 (~ + I ko I) z~ (t) I(I ~o I +1 q I) z~ (r (~0) + ~z~  (t)] + a (1 + I ko I) (~A~i) , /~  z~ r 

~z < A,(I q- [ko[) -1, 

(3.1o) 

(3.11) 

the estimate 

{c1(,--=AF'(1+Ikol))--%(1+Ikol)~lz~(o:<(,§247 ~] (3.12) 
then follows from this inequality and (3.4). 

According to (3.11), there is a E l > 0 such that the expression in the braces is positive. 
We select T(E I) for the found e I. Then from the inequalities (2.6) and (3.12) there results 
that for any ~ > 0 and for all t ~ t o , 

Z2(t) < 8 ( 3 . 1 3 )  

for sufficiently small G. According to the boundary conditions 

I a~ (t, x) I = (x - D (ay (t, ~))" di  ~< (z/3) 3/2 z 2 (t), (3.14) 

there follows from inequalities (3.13) and (3.14) the following theorem. 

THEOREM. Let ~ < Az(l + Ik01) -I. Then the rod is stable in an infinite time interval. 

4. CERTAIN REMARKS AND PARTICULAR CASES 

i) Stability conditions can also be obtained analogously for other types of rod end fix- 
ings: hinge-supported rod ends; one end rigidly clamped, the other end hinge-supported; one 
end rigidly clamped, the other end free. 

The rod stability condition has the form P < AzEJ(I + Ik01) -I. The quantity A is deter- 
mined from the solution of the variational problem in a set of functions U satisfying the 
appropriate boundary conditions. 

2) If the function ~ is linear [~(z) = el, then the stability conditions obtained agree 
with the conditions presented in [2]. 

3) For the creep kernel [7] 

o o_~(,_~>)] k (t, ~) = - E ~ [ % (~) (~ -- 

the limit creep kernel has the form 

k o (t, x) = --  E ~ [C O (i --  e-V(t-z)) l ,  C O = lim~ ~o (~)' x -+ ~" 

In t h i s  case Ikol = EC o, and the rod s t a b i l i t y  condi t ion  takes the form P < AzEJ(1 + ECo) - I  

4) Let the rod be homogeneous (p = 0) and ~(e) = lel u sign ~, 0 < ~ < i. We set 

= inf~ S (v')2 d x  ( v ' )  2 d x  , ~ ~ U .  

0 
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The rod stability condition is 

p < s[b~+ (1 + I k0 l) -~ (i + I k I ) - ; - -s-VJ.  

We hence obtain for an elastic rod (tkl = Ik0! = 0) 

P < E(~J)~S~'~L 

This condition agrees with the stability condition for an elastic rod, computed by the method 
of a tangentially modular load [8]. 

5. STABILITY OF A BONDED NOLINEARLY VISCOELASTIC ROD SUBJECTED TO AGING 

Let the rod be fabricated from a nonlinear viscoelastic material and be bonded by an 
elastic material. The armature is symmetric relative to the x i and x 2 axes~ 

The area of the armature transverse section is Sa and the moment of inertia of the sec= 
tion of the bonding material is Ja. For the uniaxial stress state the relation between the 
stress and strain in the armature is described by Hooke's law os = Eaea. Let the fundamen- 
tal rod material be homogeneous (p = 0). We set 

= ~o:o/(~+) ,  + ( ' 4 )  = ~' (:'o) + ~, 
rO (t, %)= (~' (U;)[(P(U;)]--IF (t, "D, A-1  = s'--lP t [~o ( t ) ] - i  

o 

Let k ~ denote the limit creep kernel corresponding to the relaxational kernel r ~ The sta- 
bility condition for the bonded rod has the form P < EJA(I + I k~ -i. 

The author is deeply grateful to N. Kh. Arutyunyan for attention to the research and 
for valuable remarks. 

I, 

2. 

3. 
4. 

5. 

6. 

7. 

8. 

LITERATURE CITED 

N. Kh. Arutyunyan and V. B. Kolmanovskii, "On the stability of inhomogeneously aging 
viscoelastic rods," Prikl. Mat. Mekh., 43, No. 4 (1979). 
N. Kh. Arutyunyan and V. B. Kolmanovskii, Creep Theory of Inhomogeneous Bodies [in 
Russian], Nauka, Moscow (1983). 
Yu. N. Rabotnov, "Certain questions of creep theory," Vestn. Mosk. Univ., No. i0 (1948). 
I. I. Bugakov and M. A. Chepovetskii, "Comparative investigation of nonlinear visco- 
elasticity equations," Izv. Akad. Nauk ArmSSR, Mekhanika, 37, No. 1 (1984). 
A. Drescher and B. Mixhalski, "Rheological, mechanical, and optical properties of poly- 
methyl methacryalte under conditions of a composite loading history," Mech. Teor. Stosow, 
9, No. 2 (i97i). 
A. R. Rzhanitsyn, Equilibrium Stability of Elastic Systems [in Russian], Gostekhizdat, 
Moscow (1955). 

N. Kh. Arutyunyan, Certain Questions of Creep Theory [in Russian], Gostekhizdat, Moscow 
(1952). 

A. S. Vol'mir, Stability of Deformable Systems [in Russian], Nauka, Moscow (1967). 

597 


